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Signals and Systems

INTRODUCTION TO SIGNALS AND SYSTEMS

This book starts with basic and extensive chapter on signals in which continuous
and discrete-time case are discussed in parallel. A variety of basic signals, functions
with their mathematical description, representation and properties are incorporated.
A substantial amount of examples are given for quick sketching of functions. A
chapter on systems is discussed separately which deals with classification of
systems, both in continuous and discrete domain and more emphasize is given to
LTI systems and analytical as well as graphical approach is used to understand
convolution operation. These two chapters makes backbone of the subject.

Further we shall proceed to transform calculus which is important tool of signal
processing. A logical and comprehensive approach is used in sequence of chapters.
The continuous time Fourier series which is base to the Fourier transform, deals
with periodic signal representation in terms of linear complex exponential, is
discussed.

The Fourier transform is discussed before Laplace transform. The sampling, a
bridge between continuous-time and discrete-time, is discussed to understand
discrete-time domain.

A major emphasis is given on proof of the properties so that students can understand
and analyzes fundamental easily.

A point wise recapitulation of all the important points and results in every chapter
proves helpful to students in summing up essential developments in the chapter
which is an integral part of any competitive examination.




CHAPTER

Introduction to Signals

1.1 INTRODUCTION

A signal is any quantity having information associated with it. It may also be defined as a function of one
or more independent variables which contain some information.
The function defines mapping from one set to another
and similarly a signal may also be defined as mapping from one
set (domain) to another (range). e.g.
e A speech signal would be represented by acoustic pressure as a function of time.
e A monochromatic picture would be represented by brightness as a function of two spatial variables.
e Avoltage signal is defined by a voltage across two points varying as function of time.
e Avideo signal, in which color and intensity as a function of 2-dimensional space (2D) and 1-dimensional
time (i.e. hybrid variables).

- In this course of “signals and systems”, we shall focus on signals having only one variable and will
2| /| consider time’ as independent variable.

1.2 ELEMENTARY SIGNALS

These signals serve as basic building blocks for construction of somewhat more complex signals. The
list of elementary signals mainly contains singularity functions and exponential functions.

These elementary signals are also known as basic signals/standard signals.

Let us discuss these basic signals one-by-one.

1.2.1 Unit Impulse Function

A continuous-time unit impulse function §(t), also called as Dirac delta function is defined as

o, t=0 T o0
S=1 " d [ 8(t)dt =1 1
o 0, otherwise _-[O (t)
The unit-impulse function is represented by an arrow with strength
of ‘1" which represents its ‘area’ or ‘weight'. 0 t
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The above definition of an impulse function is more generalised and can be represented as limiting
process without any regard to shape of a pulse. For example, one may define impulse function as a limiting case
of rectangular pulse, triangular pulse Gaussian pulse, exponential pulse and sampling pulse as shown below:

SI. No. Type of Impulse Graph
p(t)
1
2¢e
1. Rectangular Pulse l_,_
P
d=(t)lim p(t)
£—0 1
27,
-, L[0! T, t
|
I 28 I
A(t)
1
2. Triangular Pulse T
t
lim 1 1—U tl<t X
¥t)=4101T T T,
0 t]>r
-, T 0 — 1 t
A(t)
1
3. Gaussian Pulse T
1 2.2 L
t)=lim—|e™" ]
6() T—)OT[ B
0 t
A(t)
.1
21,
4, Exponential Pulse
1 [ el A
o] :
&) ‘ETOZT ° T2
0 t
5. Sampling Function k,
| =Sa(kt)dt =1
T
~_ "\ AN
~ N7 T\ T
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Properties of Continuous Time Unit Impulse Function

(i) Scaling property:

S(at) = |;—|8(t)

1

la]

Proof: dat) = 3(t)

'a'is a constant, postive or negative

Integrating above equation on both the sides with respect to ‘t’.

+oo Foo 1
i Sat)at = _joﬂés(t)dt

Let at=1
a-dt= dr ; ‘a'isaconstant, positive or negative ~ or  |al - dt=
= i at T e iy
Now, f&(at)dt = J'S(r)-H = faﬁ(t)-dt By definition, Is(t)dt = jé‘)(r)dr=1

(ii) Product property/multiplication property:

x(1)d(t - t,) = x(t,)0(t —t5)

Proof:

The function 8(t - 1) exists only at t =t . Let the signal x(f) be continuous at t = t .

Therefore,

| j fe“ Important Expressions
(e N
G

S(at+b) - éS(l‘ig)

. x(t) 8(t) = x(0) &(t)

(iii) Sampling property:
+oo
[ x(t)8(t — to)dt = x(t,)

)

Proof :
Using product property of impulse function

(1) 8(t— 1) = x(t) 8(t—t.)

M(0)8(t- ) = ©(B_, St =to) =x(1) 8(t- 1)

Integrating above equation on both the sides with respect to ‘t’.

+oo +oo

[ x0)8(t—to)dt = [ x(t)8(t—t,)at = x(to)fa(t—ro)dr = x(t)

—oco —oco

MRDE ERSYH
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(iv) The first derivative of unit step function results in unit impulse function.

() = %u(t)

Proof :
Let the signal x(f) be continuous att = 0.

+oo +oo

Consider the integral j%[U(f)] x(t)dt = [ud)x(0)] - j x'(t) ut) ot

—oco

= x(ea) = [X(D) At) = x(e=) = [x(1)]; = x(0) (i
0
We know from sampling property  x(0) = T x(t) 8(t) at (i)
From equations (i) and (ii), we get 7
+oo q +oo

| ~luol <t = [ x(®)8()dt ;  Oncomparing, we get §(f) = %U(t)

(v) Derivative property:

fa

J' x(t)8"(t — t,)dt = (_1)"x"(t)‘t_t . ty <ty <tp and suffix n means n” derivative
t -0
dn
where, 8"(t—t ) = 3(t)
dx"
Proof:

Let the signal x(f) be continuous at t = {, where t, < t,< t,.
Consider the derivative %[x(t) 8(t—tp)] = O (E—1tp)+x'(t)d(t—1p)
Integrating above equation on both the sides with respect to ‘t’.
t ta ta
d , ,
| lx08-to)]dt = [x(t)8(t~to)at+ [ x(t) 8t - to)et

] t t

t to
[ 208t = to)att + [ (1) 8(t - to)alt

[1 [1

[+(0) 8t to)];?

fa fa
[ x(0) 8t - to)dt + | x(t) 8(t - 1)t

f t
Here, &(t,-t,)=0andd(f,-t,) =0 because t,# t, or t, # t,

[x(to) 8(t> — to) — x(ty) 8(t; - 1p)]

So, 0 = [x(0)8(t—to)dt+ [ x'(1)3(t —to)dlt
f f
to to
[x) 8t -t)at = (=) [x(t)8(t—t)at (v using sampling property)
4 t
= = (1) x(t,)

MRDE ERSYH www.madeeasypublications.org Theory with
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Hence, ]Zx(t) §(t—ty)dt = (-1)'x(t,)
t

If same procedure is repeated1for second derivative, we get
[ng(t) §"(t-ty)dt = (—1)2x"(t,)
t

On generalising aforementionlad results, we get
Tx(t) 8"(t—to)dt = (—1)"x"(t,)
t

(vi) Shifting Property:
According to shifting property, any signal can be produced as combination of weighted and shifted impulses.
400
x(t)= [ x(t) 8(t - 1) dr

)

Proof:
Using product property, x(t) 8(t—ty) = x(t;) 8(t—t,)
Replacing t, by T, x(1) d(t—1) = x(t) 8(t—1)
Integrating above equation on both the sides with respect to ‘1.
+oo +o0 +oo +oo
[ 8t-vdt = [xm)st-nadr ;  x(0)] 8(t-T)dr = [ x(x) 8(t - 1)t

—oco —oco —oco —oo

+oo +oo

() 1= [*@3-10t ;. x()= [ x1)8(t-1)d

—oo —oo

(vii)  The derivative of impulse function is known as doublet function. Graphically: §(t)

§(1) = %S(t)

Area under the doublet function is always zero.

Discrete-Time Case

The discrete time unit impulse function §[n], also called unit sample sequence or delta sequence is
defined as 3(n)

8] = {1, n=0

0, otherwise

It is also known as Kronecker delta.
Properties of Discrete Time Unit Impulse Sequence

(i) Scaling property:
8[kn]=9d[n]; k is an integer

MRDE ERSYH www.madeeasypublications.org solveghﬁﬁgnﬁgé
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Proof:
By definition of unit impulse sequence
1 =
] = { , n=0
0, n=#0
0
_ 1, n=—=0 _
Similarly, Skn] = |1 k=0 koo o =0
0, kn=0 0, n#0
0, nz—=0
(ii) Product property:
x[n]d[n — nyl = x[ny1d[n — ny]
From definition, d[n-ny] = {1’ n="ro
0, n#zm
We see that impulse has a non zero value only at n= n,
Therefore, x[n]8[n-ny] = x[n]|,7 o 8[n—ny]
x[n] 8[n—n,] = x[n,] 8[n—n,]
(iii) Shifting property:
400
x{nl= Y «[k18[n - K]
K=-o
Proof:
From product property, — x[n]8[n-n,] = x[n,] 6[n—n;]
Replacing n, by ‘K x[n] 8[n— K] = x[K] 8[n— K]
+oo teo +o0 oo
= Y Andin-k= 2, xkl8[n-kl = «nl Y 8n-kl = Y, AkI8[n-kI
Kk =—oco k=—oo K = —oo k=—oo
+oo I
= A(nl-1= Y Akl8n—-kl:  xlnl= Y Akl8[n-Kl
K=- K =—oo
(iv) The first difference of unit step sequence results in unit impulse sequence.
d[n]=u[n] — uln -1]
Proof:
By definition of unit step sequence
unl = Y, d[n-kl
k=0
= 8[nl+ Y, 8[n—k]
k=1
But, un-1= Y 8ln-k
k=1
MRDE ERSYH www.madeeasypublications.org Theory with
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We get,
Graphically we can see,

-

0 12 3 n

o[n]
1 {

Summary Table:

S.No. | Properties of CT unit Impulse Function | Properties of DT unit impulse sequence
1. |8() == dms(t)d 1 | §n) b =0
. = an t = nl=
0, otherwise i 0, otherwise
2. | x(t)d(t —to) = x(to )t — 1) x[n]8[n — k] =x[k]d[n — K]
d

3. ot) =Eu(t) n] =u[n] —u[n —1]
4, TS(t —T)dt=u(t) i o[n — k] = u[n]

0 k=0
5. x(t)= ]ix(’t)ﬁ(t —1)dt x[n] :ix[k] n—kK]
6. | [ x(t)&t—ty)at =xity) S s{n18in —ny] = x{n,]

1
&at):mﬁ(t)
&kn] =3 n]
1 b
7. dat+bh)=—-0|t+—
El ( a)
8-l =3gn]
&(—t)=4a(t)

t 0), t,<t<t
8. jx(t)&t)dt:{x( h h<t<t

4 0, otherwise

ty
. [ X6 (t —to)dlt =(1)" x"(to), ty <to <t

. i

where suffix n mean n derivative

=9
10. S(t)_dt &(t)

MRDE ERSY Theory with

www.madeeasypublications.org Solved Examples
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EXAMPLE : 1.1 The Dirac delta function §(t) is defined as
1; t=0 1; t=0 3
a 6 t = b = ’ =
(@) ( ) {0 ;. otherwise (b) S(t) {O; otherwise and _J;S(t)dt 1
w; t=0 o; t=0 T
= ’ = = 1
(c) 5(t) {0 " otherwise (d) (1) {o " otherwise and __[aéi(t)dt
Solution : (d)
EXAMPLE : 1.2 The integral _[ 8(1‘ - %)6sin(t) dtevaluate to
(a) 6 (b) 3
(c) 1.5 (d) O
Solution : (b)
. . . i AT
Given signal is x(t) = f S(t—g)Gsmt at
By applying shifting property of unit impulse function
[ X008t =) = (1)
IS(t—EJGSin(t)dt - 6-sint = 6><l=3
J 6 6 2
EXAMPLE : 1.3 I (1) + | g’ y(t)x(t - 7)dt = 8(t) + x(t), then y(t) is
(a) u(t) (b) &(t)
(c) r(t) (d) 1
Solution : (b)
As we know that jy(x) x(t—=A) dr = x(t)
o
So, y(t) = 8(t) satisfies the given equation
EXAMPLE : 1.4 Which of the following is NOT a property of impulse function?

(a) x(t) 8(t—t.) = x(t)) 8(t—t) (b) x(t) * 8(t— 1) = x(t—t,)

to

(@ [0t at=xtt)iti<t<t (@) [ ()

d” d”
dxn S(t - to) at = WX(I‘)

Y t=1g

Solution : (d)

+oo n

j () d

By derivative property _
dx" t=lo

—oo

MRDE ERSYH

Theory with
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1.2.2 Unit Step Function

The continuous-time unit step function, also called “Heaviside” unit
function, is defined as
1, t>0 1
ut) = {

u(t)

0, t<0
The function value at t = 0 is indeterminate (discontinuous)

Properties of unit step function:

(i) The unit step function can be represented as integral of weighted, shifted impulses.

u(t) = Tﬁ(t -1)adt
0

Proof:
According to the shifting property  x(f) = Tx(r) 3(t-1)dt Let, x(f) = u(t)
- -
ut) = [umsit-vor = [dt-1)ck
Since, u(t) = (;Q; —0<T<0 i

ut)=1;1>0

(ii) Scaling property:
u(at) = u(t), a>0

e The unit step function is continuous for all t, except for t = 0 where sudden change take
place (i.e. discontinuity).

e (0)= % (The average value)

Discrete-Time Case

The discrete time unit-step sequence u[n] is defined as,

u[n]
el )
0123 - "

r(t)

1.2.3 Unit Ramp Function:

A continuous time unit ramp function is defined as

t, t=0
r(t) = Unit slope
0, t<0 #
Also, r(t) = tu(t) t
MRDE ERSYH www.madeeasypublications.org Theory with

Solved Examples



POSTAL Signals and Systems
MARDE ERASY BOOK PACKAGE 2025 Introduction to Signals 11

Discrete-Time Case

A discrete-time unit ramp sequence is defined as

{n, n=0 ]
rln] =
0, n<O I ‘

Also, rin] = nuln] . I

o1 2 3 n
j"fg‘ Important Expressions
t t o
o A= [udr e = | [d()arda o rn]=nuln]

1.2.4 Unit Parabolic Function:

A continuous-time unit parabolic function p(t) (unit acceleration function) is defined as

5 p(t)
L tx0
pt)=12" "~
0 t<O
tr(t) t°
Also, H= 22t
p(t) 5 =5 ub
0 t
Discrete-Time Case
The discrete time unit parabolic sequence p[n] is defined as pln]
o 0 ndn] rPdn)
plnj=1%" "= Also, p[n] = 0 _
2 2
O, n<0 I I
L)
0] 1 2345 n
1.2.5 Signum Function:
The continuous time signum function, sgn(f) is defined as
t
sgn(f) = 1, t>0 sgn(t)
-1 t<O0 1
We see, u(t)— u(=t) = sgn(t) .
also u(t) + u(-t) = 1 0
We get, sgn(t) = 2u(t) -1 — I
Keeping following facts in the mind that is
() lime™ =1 t>0
a—0
; t
i Jme” —4 t<o

The positive half of signum function can be represented as Iimoe““u(t) and the negative half, as
o—

lim e*lu(-t).

oa—0

MRDE ERSYH www.madeeasypublications.org solveghﬁﬁgnﬁgé
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Solution :
(i) x(t)
A

/—x bfa(nb), —b<t<-a

b -a 0 a b x(t)=1A -as<t+a
1 1 1 I t A
P o ~5og(t-b), astsb
Lo ad
I
Lo A

Tbhb-a |
a b dx(t) A A

Er—— : p —b_a{u(t+b)—u(t+a)}—b_a{u(t—a)—u(t—b)}
. A
pob-al
Lol )|
.
1 “a o _aa T d’x(t) A A

s l 5 1 > — =B+ b)+ 8(t - b)} -~ {B(t + @)+ 3(t - a)}

A
“b-a

(ii)

2 1 o 1 2 ¢
SN i i N
.’\&x‘lzz 11 .\\/’L/
S PR
2 - 0\ |
ﬁf\ N t
X AN
: 7/‘ ' 7/-

x(O)=r(t+2)—r(t+ 1) =r(t=1) + r(t-2)

The signal is

OBJECTIVE o T
BHAIN TEASEHS (a) perlOdlC with 8 (b) perlodlc with 8(’)'E + 1)

‘\ /d (c) periodic with4  (d) non-periodic
Q.1 The odd component of the signalx(t) =e? costis Q.3 The power of signal x[n] = (-1)" u[n] is W.

(a) cosh (2t) cost (b) —sinh (2t) cost . . ' o

(c) —cosh(2t) cost  (d) sinh(2t) cost Q.4 Adiscrete time signal is given as
Q.2 A discrete time system is given as: x[n] = cos(%n) (ulnl-uln-6])

x[n] = cos(%} .sin(%”j The energy of the signal is J.

MRDE ERSY Theory with
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Q.5 Twofunctionsx[n]and y[n] are shown in following x(t)
figures. 1
x[n] X |
] ] e e
= _;1 5 4'1 s t (sec)
-4 -3-2-1 |01 2 3 4 n The energy of x(1) is .
Q.10 A signal x(t) is given by,
nl
x(t)
5 _______
01234567 '
S 7 |
2_ 1 : 1 1
n-ny D v/ S t
If y[n]=ox | then value of ng + o+ kis o 1 2 4 5 6 7
The value of the integral
Q.6 Consider a discrete time signal as follows: I= [ x(-t+)§(t+25)dtis
1 ; n=1 ,
Q.11 For the signal x(f) shown below, the value of
x[n]=1-1: n=-1 t
0 ; otherwise [ x(x) o is
oo t=05

If y[n] = x[n] + x[-n], then the energy of the

signal y[n] will be (Upto two decimal places).

(@ 0 (b) 1 0
(€) 2 (d) 4 1
1 2 3 4 5
Q.7 A continuous time signal is defined as, ‘ J j L } t
x(f) = 4003(2—;z‘+ 40°J+ SSin(4—;t+ 200). T e

Q.12 Two signals x(t) and y(t) are shown below,

The fundamental time period of x(1) is W)

(a) 30msec (b) 15msec 0 . 0.8 |
(c) 15sec (d) 30sec L — _2}/—_2— 16
Q.8 The conjugate antisymmetric part of the i i t
sequence, x(n) =[-5-3+2/,4/,8+9/] is i | t
T 0 2 A 1—0.75
(8) [-4+4.5j-25+2]-2],-2.5+2],4+45]] ) | |
1

(b) [-4+4.5],-25+2),2],25+2j 4+45]]
T

() [~4-4.5j,—2.5+2),-2j,2.5+2j, 4 +4.5/]
T

ANSWERS KEY
(d) [4-45j-25+2)-2j,2.5-2j— 4+45]]
0

, _ _ 1. (b) 2. (d) 3. (05 4. (3) 5. (45
Q.9 Consider the trapezoidal pulse x(f) shown in the
figure below: 6. (@ 7. (0 8. (b) 9. (8.67)

10. (2.5) 11. (0.5) 12. (0)
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HINTS & EXPLANATIONS 4 4 4

. [ s OO
x(t) = e~? cost
x(=t) = et cos(-t) = e?lcost
Odd component,

U La(t) - x(-)]

By zero
— .
Inerpolation

xXo(t) =

2 lByshifting by 3
-2t 2t ot ot
e~ —-¢€ e~ —-e
x (t) = cost| ————| = —cost| ——
O( ) 2 :| |: 2 :| -1/2 x[n- 3] x[(n—3)/2]
= x(t) = —sinh (2t) cost { -2 ‘] """ T """ I
12 3 45 =~
| 2 [C) na Tl IR ERICK
1
= Mg 2}, 41 1 [n-3 n-n,
x[n] = cos(dsm[ 4) BTN So, y[n] = _Ex[ 5 }W{TO}
m 1 o
= — = — whichisirrational 1
N 8n (x:—E;no=3;K=2
Hence, the signal is aperiodic.
So, ny+a+K=45
EN 05 "o [0
x[n] = (=1)"uln] ]
1 N
Power, P=lim DR I
N — e 2N+1n:—N x[n]— -1 . .
N 0 1
: 2n li N+1
P: ||m (—1) =
N_)w2N+1n§::O N DN+ 1 3
1 1
By using L-Hospital’s rule, P = 2 W=05W ?
X[—ﬂ]—) ° 1 n
4. [8) T

Energy, E= Y x°[n] = Energy of y[n] = i |y(n)|2 =0

n=-—oo n=-—oo

5 2
E=Y [cos@} ()
n=0 3

2 x(f) = 4cos 2—nt+40° +3sin ﬂt+20°
3 5

2
= E = [cosOP + [COS%} + [00823—“} +[cosm?

x4(t) xo(t)
3 2
{cos[ﬂﬂ +COS|:@} o, = 2n LT o2m_ 2n _
3 3 1 3 ! o, 2n/3
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4) CONVENTIONAL BRAIN TEASERS

Q.1 Consider asignal x[n],

x[n] = i gln -kl + i g{%—k} where, g[n] = §[n]

k=—co k=—oo
Nis an even integer with 0 < N < 4.
(i) Draw the waveform of signal x[n]. (ii) Find the power of the signal x[n].

5
(iii) Find the value of Y, x{n].

n=-4
n (Sol.)

oo

(i) k;ﬂn—k]
SEREEN.
pLE
L L]
X =

[
x[n] is periodic with period. M = 2.
.. 1 1 5
(i) Power of X[n] P ==Y |x[n]|2 = —[4+1]===25W
M = 2 2
5
(iii) Yanl =2+1+2+1+2+1+2+1+2+1=15
n=-4
EEEN
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